skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Monard, François"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the mapping properties of the X-ray transform and its adjoint on spaces of conormal functions on Riemannian manifolds with strictly convex boundary. After desingularizing the double fibration, and expressing the X-ray transform and its adjoint using b-fibrations operations, we employ tools related to Melrose’s pushforward theorem to describe the mapping properties of these operators on various classes of polyhomogeneous functions, with special focus to computing how leading order coefficients are transformed. The appendix explains that a naive use of the pushforward theorem leads to a suboptimal result with non-sharp index sets. Our improved results are obtained by closely inspecting Mellin functions which arise in the process, showing that certain coefficients vanish. This recovers some sharp results known by other methods. A number of consequences for the mapping properties of the X-ray transform and its normal operator(s) follow. 
    more » « less
  2. Abstract We study a one-parameter family of self-adjoint normal operators for the x-ray transform on the closed Euclidean disk D , obtained by considering specific singularly weighted L 2 topologies. We first recover the well-known singular value decompositions in terms of orthogonal disk (or generalized Zernike) polynomials, then prove that each such realization is an isomorphism of C ∞ ( D ) . As corollaries: we give some range characterizations; we show how such choices of normal operators can be expressed as functions of two distinguished differential operators. We also show that the isomorphism property also holds on a class of constant-curvature, circularly symmetric simple surfaces. These results allow to design functional contexts where normal operators built out of the x-ray transform are provably invertible, in Fréchet and Hilbert spaces encoding specific boundary behavior. 
    more » « less
  3. On simple geodesic disks of constant curvature, we derive new functional relations for the geodesic X-ray transform, involving a certain class of elliptic differential operators whose ellipticity degenerates normally at the boundary. We then use these relations to derive sharp mapping properties for the X-ray transform and its corresponding normal operator. Finally, we discuss the possibility of theoretically rigorous regularized inversions for the X-ray transform when defined on such manifolds. 
    more » « less
  4. Abstract We first give a constructive answer to the attenuated tensor tomography problem on simple surfaces. We then use this result to propose two approaches to produce vector-valued integral transforms, which are fully injective over tensor fields. The first approach is by construction of appropriate weights, which vary along the geodesic flow, generalizing the moment transforms. The second one is by changing the pairing with the tensor field to generate a collection of transverse ray transforms. 
    more » « less